This article explains how to create a PyTorch image classification system for the CIFAR-10 dataset. CIFAR-10 images are crude 32 x 32 color images of 10 classes such as "frog" and "car." A good way to ...
Using whole-slide hematoxylin and eosin images from 214 patients with glioblastoma in The Cancer Genome Atlas (TCGA), a fine-tuned convolutional neural network model extracted deep learning features.
CIFAR-10 problems analyze crude 32 x 32 color images to predict which of 10 classes the image is. Here, Dr. James McCaffrey of Microsoft Research shows how to create a PyTorch image classification ...